An ensemble approach to improved prediction from multitype data∗
نویسندگان
چکیده
We have developed a strategy for the analysis of newly available binary data to improve outcome predictions based on existing data (binary or non-binary). Our strategy involves two modeling approaches for the newly available data, one combining binary covariate selection via LASSO with logistic regression and one based on logic trees. The results of these models are then compared to the results of a model based on existing data with the objective of combining model results to achieve the most accurate predictions. The combination of model predictions is aided by the use of support vector machines to identify subspaces of the covariate space in which specific models lead to successful predictions. We demonstrate our approach in the analysis of single nucleotide polymorphism (SNP) data and traditional clinical risk factors for the prediction of coronary heart disease.
منابع مشابه
Ensemble Learning for Cross-Selling Using Multitype Multiway Data Ensemble Learning for Cross-Selling Using Multitype Multiway Data
Cross-selling is an integral component of customer relationship management. Using relevant information to improve customer response rate is a challenging task in cross-selling. Incorporating multitype multiway customer behavioral, including related product, similar customer and historical promotion, data into cross-selling models is helpful in improving the classification performance. Customer ...
متن کاملDevelopment of an Ensemble Multi-stage Machine for Prediction of Breast Cancer Survivability
Prediction of cancer survivability using machine learning techniques has become a popular approach in recent years. In this regard, an important issue is that preparation of some features may need conducting difficult and costly experiments while these features have less significant impacts on the final decision and can be ignored from the feature set. Therefore, developing a machine for p...
متن کاملEnsemble Kernel Learning Model for Prediction of Time Series Based on the Support Vector Regression and Meta Heuristic Search
In this paper, a method for predicting time series is presented. Time series prediction is a process which predicted future system values based on information obtained from past and present data points. Time series prediction models are widely used in various fields of engineering, economics, etc. The main purpose of using different models for time series prediction is to make the forecast with...
متن کاملEnsemble-based Top-k Recommender System Considering Incomplete Data
Recommender systems have been widely used in e-commerce applications. They are a subclass of information filtering system, used to either predict whether a user will prefer an item (prediction problem) or identify a set of k items that will be user-interest (Top-k recommendation problem). Demanding sufficient ratings to make robust predictions and suggesting qualified recommendations are two si...
متن کاملA Novel Ensemble Approach for Anomaly Detection in Wireless Sensor Networks Using Time-overlapped Sliding Windows
One of the most important issues concerning the sensor data in the Wireless Sensor Networks (WSNs) is the unexpected data which are acquired from the sensors. Today, there are numerous approaches for detecting anomalies in the WSNs, most of which are based on machine learning methods. In this research, we present a heuristic method based on the concept of “ensemble of classifiers” of data minin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008